Just Slow Down

Many readers may be familiar with the hull-resistance curves associated with displacement boats, which include most sailing monohulls. These curves show the amount of energy needed (in kilowatts or horsepower) to move a boat at a given speed through smooth water in no wind.At slow speeds, the principal resistance to motion is friction between the wetted surface area of the hull and the
Author:
Updated:
Original:

Many readers may be familiar with the hull-resistance curves associated with displacement boats, which include most sailing monohulls. These curves show the amount of energy needed (in kilowatts or horsepower) to move a boat at a given speed through smooth water in no wind.

At slow speeds, the principal resistance to motion is friction between the wetted surface area of the hull and the water. So long as the boat’s bottom is clean, this resistance is usually low and it therefore takes little energy to move a displacement boat in calm water. As the boat moves through the water, it makes waves. At slow speeds these waves are small and close together. As speed increases, the waves increase in size and lengthen until we reach a point where there is a wavecrest at both the bow and stern with a clearly defined trough between them. Now the length of the wave the boat is making is the same as the waterline length of the boat.

Calder


HULL SPEED

It takes energy to make these waves; not much initially, but the amount of wave-making energy expended rises rapidly as the wave length approaches the waterline length. Thereafter it takes enormous amounts of energy (whether produced by sails or an engine) to gain ever smaller increases in speed unless the hullform is capable of planing or is very light and narrow. For years, we’ve all been taught to think in terms of a maximum “hull speed” for most displacement boats (I am not addressing racing boats here) as the point at which the wavelength more or less equals the waterline length. This is defined by the classic hull-speed formula: 1.34 x ?(waterline length in feet). Most displacement boats must be surfing to significantly exceed this speed.

Our current boat, a Mal 46, has a waterline length of 38.25 feet. The square root is 6.18 feet, so this yields a nominal hull speed of 1.34 x 6.18 = 8.28 knots. We can tell when we reach this speed, because the stern wave we generate is then under the stern counter. If we go any faster, this wavecrest starts to move aft of the boat until we are trying to climb up our bow wave. This only happens in stiff winds or with a push from the waves.

How much energy does it take to achieve 8.28 knots in calm water? As part of our ongoing European Union-funded hybrid-propulsion research, we have installed test equipment on our boat that enables us to quantify this. Depending on the propeller used (we tested eight this summer, some with two or more different pitch settings) it takes between 55 and 74 hp at the propeller shaft. The lower number was achieved using the most efficient propeller; the higher number came from the least efficient.

What happens if we slow down to 7.28 knots? It’s quite dramatic. The power demand drops to between 26 and 32 hp, less than half as much. When we cut our speed to 6.28 knots, the power demand drops to between 15 and 17 hp, or approximately 25 percent of the demand at hull speed. In other words, the last two knots of extra speed requires three times as much power as the first 6.28 knots.


FUEL CONSUMPTION

Calder2

How does this translate into fuel consumption? At 8.28 knots our fuel consumption varied from just under 3.5 to 4.75 gallons per hour. At 7.28 knots it was between 1.6 and 2 gallons. At 6.28 knots it was between 1 and 1.25 gallons. In other words, as you would expect, fuel consumption pretty much mirrors the energy input into the propeller shaft. It takes half as much fuel to do 7.28 knots instead of 8.28 knots, and one quarter as much to do 6.28 knots instead of 8.28 knots. To put this in perspective, at $3 a gallon that last 2 knots costs around $9 an hour, or $4.50 a mile. At 8.28 knots we are paying around $1.50 per mile traveled, while at 6.28 knots we are paying only 54 cents a mile. Reducing our speed by less than 25 percent reduced fuel costs per mile to one third of what they were at hull speed.

We’ve also run some tests comparing a mildly fouled propeller to the same propeller when clean and polished, to see what effect a few barnacles might have. It really was just a few barnacles, but it was equally as shocking. At any given speed, fuel consumption was approximately 50 percent higher with the fouled propeller compared to the clean one, while for any given level of fuel consumption our speed fell anywhere from half a knot (at higher levels of fuel consumption) to a full knot (at slower speeds and lower levels of fuel consumption). For example, at 7 knots, fuel consumption went from around 1.06 gallons per hour without barnacles to around 1.6 gph with barnacles. If we locked in our fuel consumption at a steady 0.8 gph, our speed fell from around 6.5 knots without barnacles to around 5.5 knots with barnacles.


REDUCING MY CARBON FOOTPRINT

The European Union’s primary objective in funding our project is to reduce the carbon footprint of recreational boating. We are trying hard to design more efficient onboard-energy systems to service both propulsion and “house” loads. We already know we can often substantially improve upon conventional systems, but it will be a while before the marketplace reflects this.

Meanwhile, for those interested in achieving better fuel efficiency and/or reducing their own carbon footprint, I have two clear messages to share: keep your propeller clean and slow down a knot or two.

Currently, the quickest way to maximize fuel conservation on a boat is to install a miles per gallon (or gallons per mile) meter at the helm station. Most owners would be truly shocked at how fuel consumption doubles or even quadruples when they try to squeeze out an extra knot or two of speed. If the increase in consumption was immediately apparent, they would immediately ease up on the throttle.

Of course, even greater efficiencies can be achieved if we all learn to be more patient and sail to our destinations instead of starting up the engine whenever speed falls below 5 knots…

Related

pic00

Installing a Helm Pod

Our 1987 Pearson project boat came with an elderly but functioning Raymarine chartplotter, located belowdecks at the nav station. Since I usually sail solo or doublehanded, it was of little use down there—it needed to be near the helm. When I decided to update the plotter along ...read more

Panamerican

Pan American Game Success

Team USA’s young sailors went to the quadrennial Pan-American Games in Lima, Peru this summer with high hopes, and returned with a good haul of medals—two Golds, three Silvers, and two Bronze. Gold medals went to Ernesto Rodriguez and Hallie Schiffman (Mixed Snipe) and Riley ...read more

190916-AC75

U.S. Team Launches First America’s Cup Boat

Fast forward to around 2:25 to see the boat in action. First day out and already doing full-foiling gybes: not too shabby! Hard on the heels of the unveiling of New Zealand’s first AC75, the New York Yacht Club’s American Magic team has now launched its first America’s Cup ...read more

GGTobCaysHorseshoeColors

Picking a Charter Destination

Picking a destination should reflect the interests of your group, says People often ask about my favorite charter destination, and invariably, I sidestep the question with one of my own: “Well, what do you want to do on your vacation?” Most often I hear an incredulous, “Why, ...read more

sinking

Waterlines: Chasing Leaks on Boats

Chasing leaks on boats is a time-honored obsession. Rule number one in all galaxies of the nautical universe through all of nautical history has always been the same: keep the water on the outside. When water somehow finds its way inside and you don’t know where it’s coming ...read more

BestBoatNominees2020-Promo

Best Boats Nominees 2020

Bring on the monohulls! In a world increasingly given over to multihull sailing, SAIL magazine’s “Best Boats” class of 2020 brings with it a strong new group of keelboats, including everything from luxury cruisers nipping at the heels of their mega-yacht brethren to a number of ...read more

TOTW_PromoSite

SAIL's Tip of the Week

Presented by Vetus-Maxwell. Got a tip? Send it to sailmail@sailmagazine.com Relieve the load  One of the ancient arts of the sailor is setting up a “stopper” to relieve a loaded rope without letting anything go. The classic use for a stopper is to take the weight off the genoa ...read more

05

Ask Sail: Water Getting into Coax

Q: While inspecting behind the nav station for my spring cleaning, I discovered water behind my chartplotter and VHF radio stack. Freshwater to boot! Do electronics leak? I didn’t think so. — Everette Gracy, Norton Shores, MI Gordan West Replies  Last winter your region was ...read more