Anchoring Principles

In the July issue of SAIL we published Jim Hancock's Scope for Improvement?" in which the author argues that the traditional anchoring rules of thumb may need revision. More scope is almost always better, unless you don't have the room to swing, or the bottom is foul.There's more to know, however, and this is where Hancock lays out the facts surrounding the catenary curve, as we
Author:
Publish date:
Updated on

In the July issue of SAIL we published Jim Hancock's Scope for Improvement?" in which the author argues that the traditional anchoring rules of thumb may need revision. More scope is almost always better, unless you don't have the room to swing, or the bottom is foul.

There's more to know, however, and this is where Hancock lays out the facts surrounding the catenary curve, as we promised in your print issue.

Additional Thoughts on Anchoring

Most anchors used on pleasure boats today are designed to dig into the sand or mud bottom and provide a secure attachment. Figure 1 shows an anchor on a flat seabed with the lead angle, which is the angle that the rode makes with the seabed measured upward from the bottom. The force (T) that the rode exerts on the anchor can be broken into horizontal and vertical components. Th and Tv.

If your anchor is dug in on a flat bottom and has a lead angle of 0 degrees, the force that the rode exerts on the anchor is purely horizontal (Th=T,Tv=0). This is the optimal lead angle and is what one wants to achieve in an anchoring system. As the lead angle increases, so does the upward force on the anchor. Upward force has a tendency to break the anchor out of the bottom. Eight degrees is considered by most experts to be the maximum lead angle that can be maintained without compromising an anchor's holding ability. Lead angle is controlled by veering out more, or less, scope; scope is the ratio of rode length (S) to water depth (D). The catenary curve

The curve that an anchor chain follows is known in mathematics as a catenary curve. The name catenary comes from the Latin @I {catena}, which means chain, and was first applied to this curve by the mathematician Huygens in 1690. The following year Huygens and fellow mathematicians Leibniz and Bernoulli each obtained independently the equation that describes the catenary curve. For those who are more mathematically inclined, here is the catenary equation that these great mathematicians developed is as follows:

y = h*cosh((x+k)/h) + b where: x,y = Coordinate pair on the catenary curve k = Constant of integration (horizontal offset of vertex) b = Constant of integration (vertical offset of vertex) h= H/Θ H = Horizontal load on chain Θ = Weight of chain / unit length.

Notice that the catenary equation uses the @I {hyperbolic cosine} cosh(), which is an exponential function and is quite different from the trigonometric cosine, cos(), that most of us learned in high school.

I should also add that the analysis I used in the July piece on anchoring uses the catenary equation to determine the shape of a hypothetical chain. I evaluated the equation over a range of values in an Excel spreadsheet, and then computed the length of the chain using a numerical integration of the curve.

Although I believe that we can learn a great deal about anchoring from the solution of the catenary equation there are some significant assumptions that I made in my analysis and I acknowledge them here.

1. My model uses a static analysis, meaning that the wind, wave and current loads are assumed to be steady. In gusty or rough conditions it is possible that the dynamic loads on an anchoring system could be significant.

2. The seabed is assumed to be flat. While this is often the case it is just as often not the case. Although the need for this simplifying assumption is obvious, anchoring on a sloped or uneven seabed can have a dramatic effect on an anchor’s ability to hold, either favorably or unfavorably.

3. The length of the chain between the bow roller and the surface of the water is treated as though it is submerged. However attributing buoyancy to this short segment of chain is a conservative assumption when computing minimum scope since the dry chain would give the rode a deeper sag.

* The condition of being free-hanging means that there are no external loads in mid-span. For example, the main cables of a suspension bridge are not free hanging because they have vertical suspender cables hanging from them. Because of this, the main cables on a suspension bridge follow a @I{parabolic} curve rather than a catenary curve.

Related

Meridian-X-Spin_2

MOB: A Whistle in the Wind

Mark Wheeler went overboard a few minutes before midnight. He was in the middle of Lake Michigan, 30 miles offshore in 40 knots of wind. As he fumbled for the lanyard to inflate his lifejacket he watched his racing sailboat, Meridian X, disappear into the night at more than 18 ...read more

TOTW_PromoSite

SAIL's Tip of the Week

Presented by Vetus-Maxwell. Got a tip? Send it to sailmail@sailmagazine.com Slapper stopper  When I came on deck at 0800 to hoist my colors on a visitors’ mooring recently, there was an awkward slop running in. This doesn’t trouble my Mason 44, which has a traditional counter ...read more

Tilly-1

Gear: Tilley Polaris Hat

A True Blue Tilley Sailing is all about fun in the sun, but it sometimes doesn’t take long to get too much of a good thing, especially when on a prolonged cruise or offshore passage. Enter the Tilley Polaris, the latest lid developed by iconic Canadian hat-maker Tilley. ...read more

Sand-TOWEL_MODEL-3

CGear Sand-Free Beach Towel

Sand Be Gone! The summer is hot and full of terrors—not the least of which is the sand that sticks in your beach towel in the hopes of a free ride back to your car or boat. Fortunately, there's now the CGear Sand-Free Beach Towel, engineered in polyester to not only dry quickly ...read more

01-Blowup-Tiwal2_sailing-(3)

Gear: Tiwal Inflatable Sailing Dinghy

Blow-up Boating A few years ago, the French company Tiwal arrived on U.S. shores with that most improbable of products, an inflatable sailing dinghy that actually sails the way a boat is supposed to. Now, nearly 1,000 Tiwal 3’s later, the company is back with its Tiwal 2, an ...read more

Koozy

Gear: 22 Below Koozie

Killer Koozie For all that sailors love the warmth of this time of year, that same warmth can also wreak havoc on their otherwise icy-cold beers. (Unless, of course, you drink them very, very fast. But we won’t go there.) To help deal with this terrible hardship, North ...read more

Cool-Specs

Gear: Gill's Race Fusion Sunglasses

Wicked Cool Specs Is there anything in the world of sailing more fun than a cool pair of shades? Heck, no! And it would hard to find a cooler pair than these new Race Fusion specs from longtime weather-gear manufacture Gill. In addition to looking great, they include a number of ...read more